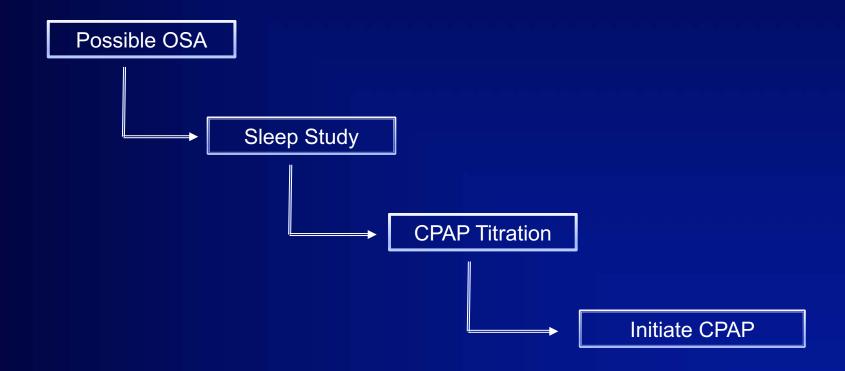
Five things every pulmonologist should know about OSA

Sanjay R. Patel MD, MS
Director, Center for Sleep and Cardiovascular
Outcomes Research


Professor of Medicine University of Pittsburgh

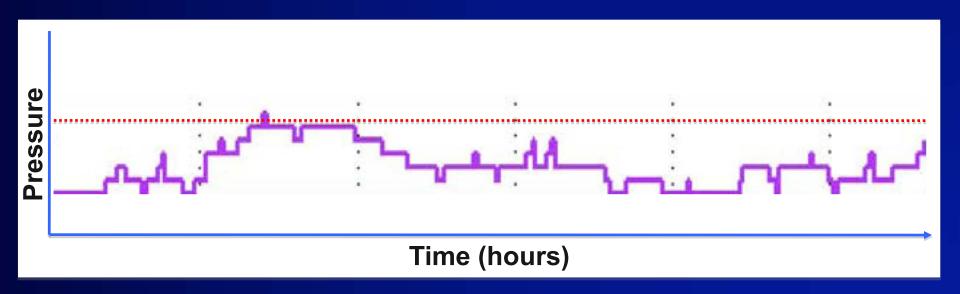
Background

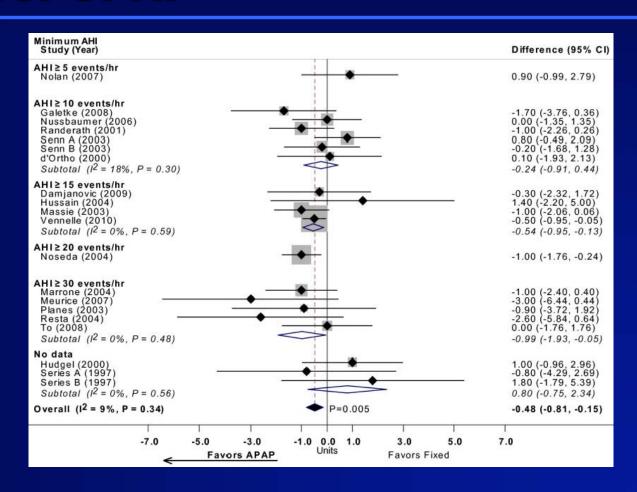
- OSA is extremely common
 - 33% have OSA and 13% have mod to severe OSA¹
- CPAP is first line therapy
 - CPAP improves sleep quality, daytime functioning, BP and maybe CVD event risk
- In population studies, only ~5% of OSA patients are on treatment²
 - Suboptimal diagnosis
 - Suboptimal treatment

Traditional OSA Care Delivery Model

Shortfalls of traditional pathway

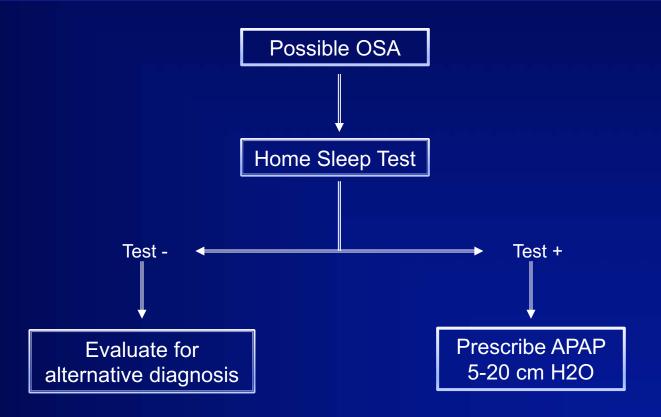
- Limited by number of sleep beds and techs.
 - Long waiting times
- Inconvenient to many patients.
 - Those with caregiver responsibilities
 - Those with atypical sleep schedules
 - Rural populations
- Long delays in initiating treatment can reduce uptake of therapy.


Laboratory vs. Home Sleep Testing



Auto-titrating CPAP (APAP)

- Devices measure flow and/or impedance and adjust pressure up and down to provide the lowest pressure necessary.
- Lowers mean pressure by 2.2 cm H2O.¹


APAP vs. CPAP

APAP

- increases compliance by 11 min
- reduces ESS by 0.48

Home Sleep Testing Pathway

- Increases access and reduces burden.
- Makes OSA diagnosis and treatment easier for the non-specialist.

RCTs of Lab versus Home Strategies

Impact at 90 days in high risk OSA patients found to have OSA

Study	N	CPAP	Usage	Δ Ερν	worth	ΔQ	uality of	Life
		Lab	Home	Lab	Home	Lab	Home	Test
Mulgrew	68	5.4 hrs	6.0 hrs	-10.0	-8.0	2.2	1.9	SAQLI
Kuna	296	2.9 hrs	3.5 hrs	-2.9	-2.6	1.8	1.8	FOSQ
Rosen	373	3.7 hrs	4.7 hrs	-7.4	-7.0	0.7	0.9	SAQLI
Hui	172	3.9 hrs	5.0 hrs	-2.2	-3.5	-0.1	0.2	SAQLI

Two shorter term trials also found no benefit of lab versus home-based evaluation and treatment.

Mulgrew AT et al, Ann Intern Med 2007; Berry RB et al, Sleep 2008; Skomro RP et al, Chest 2010; Kuna ST et al, Amer J Respir Crit Care Med 2011; Rosen CL et al, Sleep 2012; Hui DS et al, Sci Rep 2017

Study Limitations

 All studies exclude those at high risk for alternative forms of sleep-disordered breathing (CHF, COPD, opiate use, etc).

- Analyses limited to those with high risk for OSA and found to have moderate to severe OSA
 - How do you manage those at low risk for OSA?
 - How do you manage those with negative HSTs?

Limited studies in routine practice

 Clinical trial of 406 patients being seen in academic sleep centers undergoing full sleep study for possible OSA (both low and high risk)

- Patients randomized to 3 groups:
 - Full data given to physicians
 - Only HST data given to physicians
 - Only overnight oximetry data given to physicians
- Physicians unblinded at 4 months

Limited studies in routine practice

Initial Diagnosis	PSG	HST	Oxim
Mild OSA	19%	29%	38%
Mod-sev OSA	50%	50%	46%
Simple snoring	12%	11%	6%
Insomnia	2%	1%	3%
Other	16%	8%	7%

Final Diagnosis	PSG	HST	Oxim
Mild OSA	22%	26%	26%
Mod-sev OSA	50%	50%	47%
Simple snoring	13%	12%	12%
Insomnia	3%	4%	2%
Other	13%	8%	13%

Treatment	PSG	HST	Oxim
CPAP	53%	57%	62%
Oral appliance	4%	3%	5%
Surgery	2%	1%	2%
Positional therapy	4%	7%	2%
Weight loss	19%	21%	18%
Sleep hygiene	5%	3%	5%
Medications	5%	1%	2%
Other	8%	7%	5%

Limited studies in routine practice

	ΔQ	uality o	of Life	Δ	Epwo	rth	CPAP Usage		
	PSG	HST	Oxim	PSG	HST	Oxim	PSG	HST	Oxim
Baseline	16.1	16.1	15.8	10.4	10.4	10.4			
4 months	18.0	18.0	17.4	6.2	6.2	7.8	5.3	5.2	4.5
Change	+2.0	+2.0	+1.5	-4.1	-4.1	-2.8			

HSTs in routine practice

 Clinical trial of 430 patients referred to 12 academic sleep centers for OSA evaluation.

- Patients randomized to:
 - PSG followed by either APAP or conservative management
 - HST followed by either APAP or conservative management

HSTs in routine practice

 No patient randomized to HST crossed over to PSG.

 68% of PSG patients started on CPAP vs. 53% of HST patients.

HSTs in routine practice

	Δ Quality	y of Life	ΔEpworth		24-hr BP		CPAP Usage	
	PSG	HST	PSG	HST	PSG	HST	PSG	HST
Baseline	93.0	94.0	13.0	13.0	91.0	90.0		
6 months	99.5	100.7	8.1	8.8	91.0	89.8	5.3 hrs	5.1 hrs
Change	+6.5	+6.7	-4.9	-4.2	0.0	-0.2		

No difference in traffic accidents, hospitalizations, or CV events.

Cost per patient: 736€ for PSG vs. 320€ for HST

Take home message #1

 You should have a valid reason to not evaluate a patient using a home based strategy.

- Valid reasons:
 - NYHA class IV heart failure, hypercapnic COPD, high opiate usage

CPAP adherence

~10% of patients refuse to accept CPAP

 ~10% of patients abandon CPAP after 1 night of treatment

Up to 50% of patients abandon CPAP by 1 year

How do we make PAP therapy more tolerable?

A. Improve the machine

B. Improve the patient

Improving the Machine

CPAP masks

Nasal Pillows Nasal Mask Full Face Mask

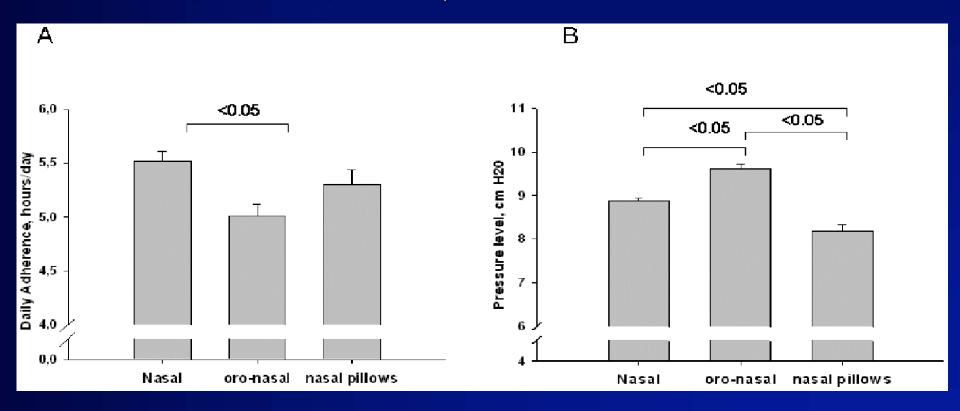
Effect of patient mask selection

- 98 consecutive patients with OSA shown 3 types of masks (nasal, oral, oronasal) and allowed to choose one to try at home.
- After 3 weeks, returned for CPAP titration and then followed for 6 months.

	Nasal	Oral	Oronasal
Choice	66%	27%	6%
Pressure (cm H ₂ O)	7.7 cm	8.0 cm	9.7 cm
Adherence (hrs/night)	4.95 hrs	4.87 hrs	4.50 hrs
6 month failure rate	32%	54%	57%

RCT of mask type

20 patients with newly diagnosed moderate to severe OSA (AHI 34). Each patient treated with 4 weeks of CPAP with nasal mask and with full face mask in random order.

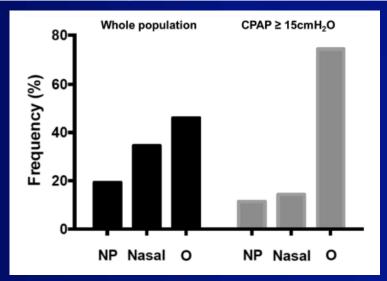

	Face mask	Nasal mask	P-value
Adherence	4.3 hrs	5.3 hrs	0.01
ESS score	9.8	8.2	<0.01

Mask preference: 19 nasal vs. 1 full face

Real world experience in France

Observational study of 2311 patients in France:

•62.4% nasal, 26.2% full face, 11.4% nasal pillows



Adjusted OR for nonadherence = 2.0 for full face mask

Real world experience in Australia

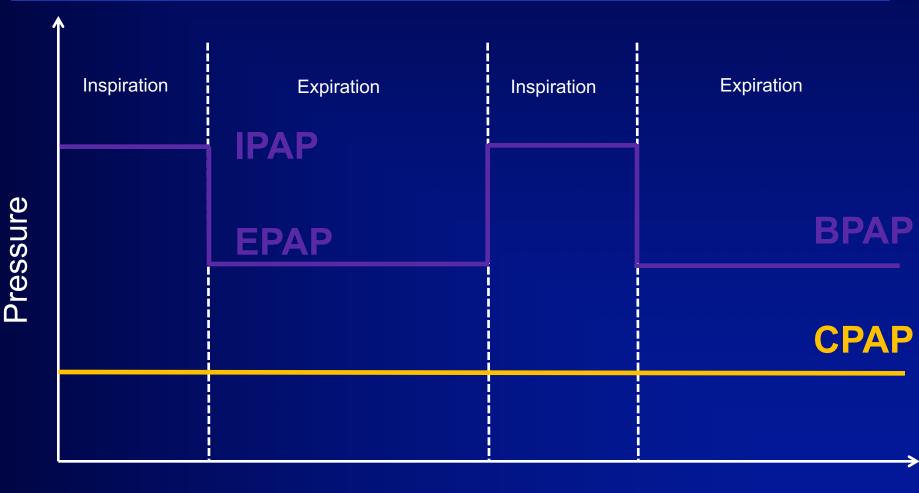
 All OSA patients started on CPAP for 1 year in an Australian sleep lab (n=358).

	Nasal	Pillows	Oronasal
Tech Choice	35%	19%	46%
Pressure (cm H2O)	10 cm	11 cm	12 cm
Residual AHI	6.4	6.7	11.3

Deshpande S et al, J Clin Sleep Med 2016; 13: 1263-8

Comparing full face to nasal masks

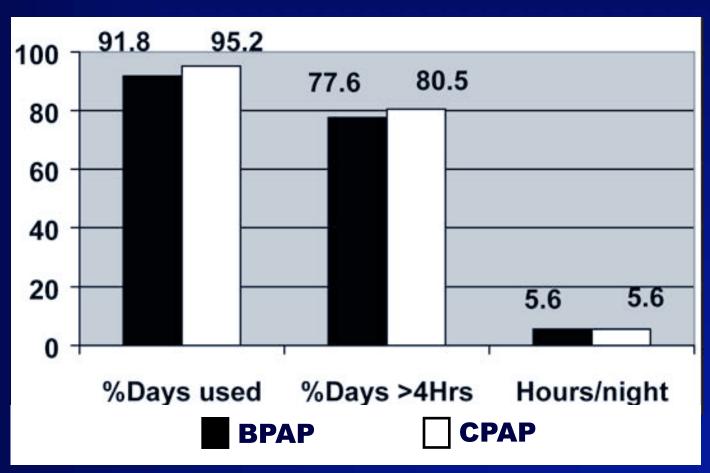
Table 1—Summary of four cases.


		Age,	BMI,	Baseline AHI,	Prescribed CPAP with	Residual AHI with Oronasal	Prescribed CPAP with	Residual AHI with Nasal
Case	Sex	y	kg/m²	events/h 15	Oronasal Mask, cmH₂O	Mask, events/h 16,18	Nasal Mask, cmH₂O	Nask, events/h 15,18
1	Male	38	28.5	49.9	17.5	55.8	12.0	3.8
2	Male	65	26.9	25.0	17.9	22.7	7.8	2.0
3	Female	56	29.4	35.0	5.0	45.2	5.0	4.8
4	Male	77	37.0	121.0	19.0	48.3	18.0	1.7

 By pushing on mandible, full face masks may obstruct flow at the level of the oropharynx.

Take home message #2

 Don't use full face masks (unless absolutely necessary).

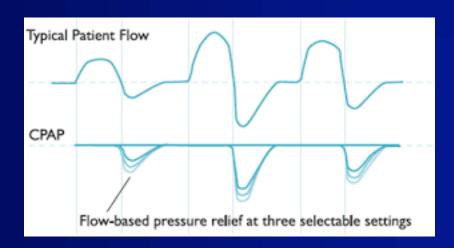

Bilevel PAP (BPAP)

Time

BPAP vs. CPAP in PAP naïve

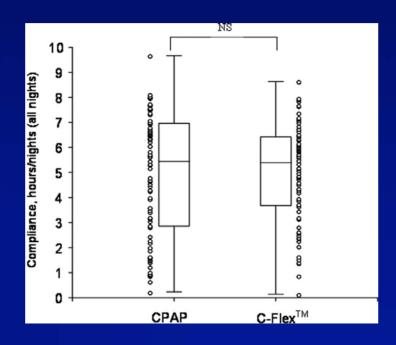
RCT over 30 days (N=27)

Meta-analysis of BPAP vs. CPAP

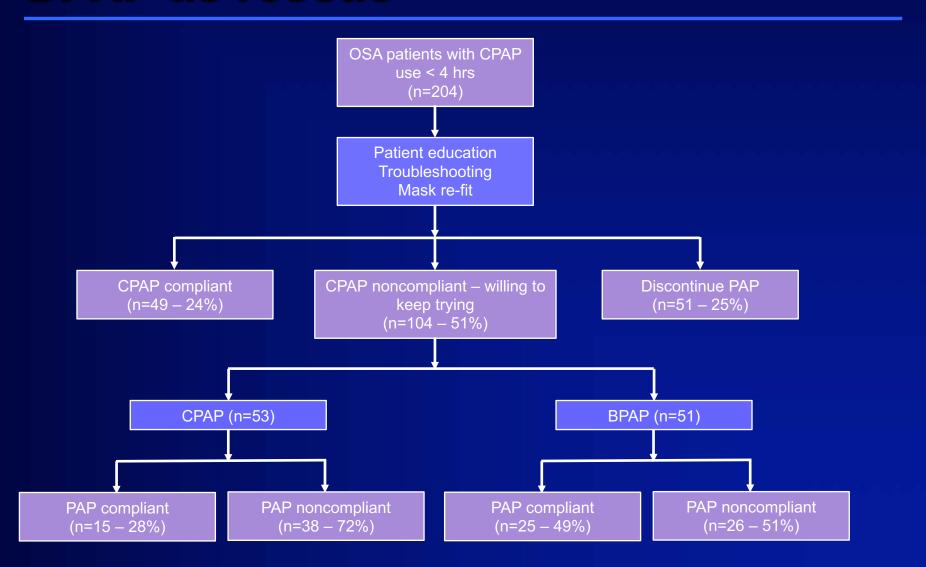

Forest plot of comparison: 2 Bi-level PAP versus fixed CPAP, outcome: 2.1 Machine usage (hours/night) - 1st arm/parallel studies [hrs/nt].

	Bi-level PAP			Fixed CPAP				Mean Difference	Mean Difference				
Study or Subgroup	Mean [hrs/nt]	SD [hrs/nt]	Total	Mean [hrs/nt]	SD [hrs/nt]	Total	Weight	IV, Fixed, 95% CI [hrs/nt]		IV, Fixe	ed, 95% C	l [hrs/nt]	
Ballard 2007	3.7	2	51	2.9	2.3	53	20.0%	0.80 [-0.03, 1.63]				•	
Blau 2007	5.3	1.5	15	5.6	1	17	17.1%	-0.30 [-1.20, 0.60]		- 9	•		
Gay 2003	5.6	1.7	12	5.6	1.4	15	9.6%	0.00 [-1.19, 1.19]		9			
Reeves-Hoché 1995	4.9	1.17	26	5	0.72	36	53.3%	-0.10 [-0.61, 0.41]			-		
Total (95% CI)			104			121	100.0%	0.06 [-0.31, 0.43]			•		
Heterogeneity: Chi ² = 4	4.08, $df = 3$ ($P = 0$	0.25); I ² = 279	6							-	_	1	- +
Test for overall effect: 2	Z = 0.29 (P = 0.77)	7)							-4 Favour	-2 rs fixed C	PAP Fa	2 vours bi-l	evel PA

- In total, 4 trials and 225 patients.
- An additional cross-over study in patients with low CPAP compliance found patient preference:
 - CPAP 40%, BPAP 40%, Neither 20%


Expiratory pressure relief

 Drops CPAP pressure early in exhalation when expiratory flow is the greatest but then allowing it to rise back to CPAP by the end of exhalation when flow is minimal.



Effect of EPR on OSA treatment

- Randomized trial of CPAP vs. CPAP + EPR for 3 months in 218 patients with mod-sev OSA (mean AHI 43, ESS 11.1, CPAP 10.6)
- Mean adherence 4.91 vs. 4.98 hrs
- Mean ESS 8.0 vs. 7.8
- No difference in improvement in symptoms, side effects, comfort

BPAP as rescue

Take home message #3

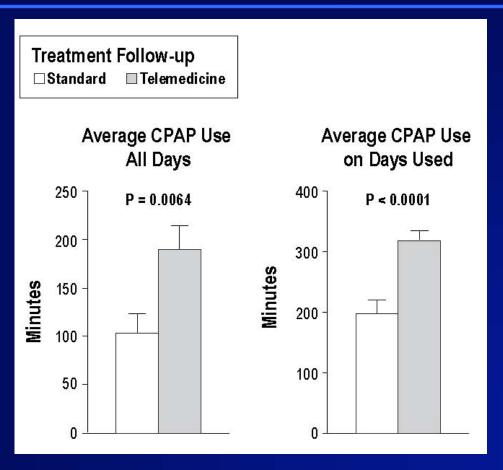
No reason for routine use of BPAP.

- If pressure intolerance is a problem:
 - EPR is a lot quicker and cheaper than BPAP.

Improving the Patient

Patient education

- Goal is for patient to understand:
 - What is OSA, why is it bad for you?
 - What is CPAP, how does it treat OSA, what benefits will you get from it?
- In one study from Israel, 65 newly diagnosed OSA patients interviewed.
 - 1/3 had doubts/skepticism of their diagnosis
 - Did not think their symptoms/signs were as bad as other people they knew
 - Did not trust in-lab studies to reflect what happened at home.


Educational interventions

Typically one time session.

Figure 6. Forest plot of comparison: 2 Educational interventions + CPAP versus usual care + CPAP, outcome: 2.1 Machine usage (hours/night).

	Inter	rventik	n	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Alois 2012a	4.34	2.45	53	3.73	2.5	48	11.8%	0.61 [-0.35, 1.57]	
Basogiu 2011	5.5	1.2	88	5.1	1.6	87	47.5%	0.40 [-0.08, 0.88]	 -
Epstein 2000	3.68	3.15	17	4.31	3,01	13	2.2%	-0.63 [-2.85, 1.58]	
Meurice 2007c	5.B	2.8	23	5.7	2.2	21	5.0%	0.10 [1.38, 1.58]	
Maurice 2007d	6.3	2.2	22	5.5	2.4	25	8.3%	0.80 [-0.52, 2.12]	 •
Wang 2011 a	3.4	2.1	38	2.6	1.6	38	15.5%	0.80 [-0.04, 1.64]	
Wang 2011 d	5.2	2	38	3.7	2.3	38	11.7%	1.50 [0.53, 2.47]	
Total (95% CI)			257			251	100.0%	0.60 [0.27, 0.93]	•
Heterogeneity: $Chi^2 = 5.91$, $df = 8$ (P = 0.43); P = 0%									
Test for overall effect $Z = 3.57$ (P = 0.0004)							-2 -1 0 1 2 Control better Intervention bette		

Adherence monitoring

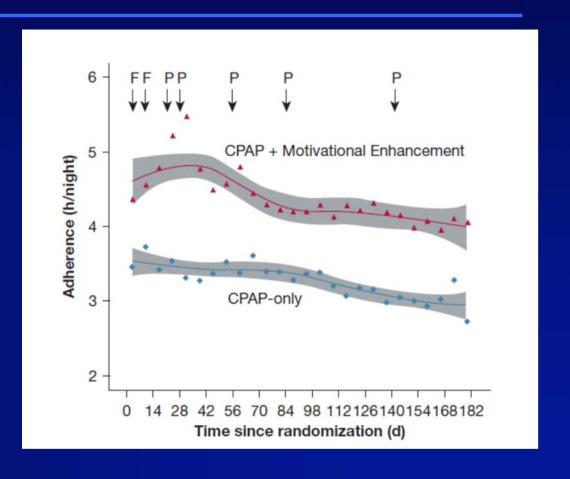
 Daily adherence tracking and response can increase CPAP usage by 87 min/day.

Support with troubleshooting

 Contacting patient regularly to identify problems and help solve them.

Figure 4. Forest plot of comparison: I Increased practical support and encouragement during follow-up + CPAP versus usual care + CPAP, outcome: I.3 Machine usage, sensitivity analysis: adherence in control group =< four hours/night.

	intervention centrol		Mean Difference		Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	M, Fixed, 95% CI	IV, Fixed, 95% CI
DeMolles 2004	4.4	3	15	2.9	2.4	15	4.3%	1.50 [-0.44, 3.44]	
Fox 2012	3.18	2.45	39	1.75	1.97	36	16.2%	1.43 [0.43, 2.43]	
Hoy 1999	5.4	1.9	40	3.8	2.5	4.0	17.2%	1.60 [0.83, 2.57]	
Lewis 2006	3.8	2.9	30	3.4	3.2	2.5	6.1%	0.40 [-1.23, 2.03]	
Parthasarathy 2012	4.35	7.6	22	3.4	2.5	17	5.0%	0.95 [-0.70, 2.50]	+-
Stepnowsky 2007	4.1	1.8	20	8.3	2.2	20	10.5%	1.30 [0.05, Z.55]	-
Mang 2011b	3.7	2.3	38	2.5	1.6	38	20.5%	1.10 (0.21 , 1.99)	-
Wang 2011c	5.2	2	38	3.4	2.1	38	19.1%	1.80 [0.88, 2.72]	
Total (95% CI)			242			229	100.0%	1.36 [0.96, 1.76]	•
Heterogeneity: Chiff = 3.06, cf = \mathcal{I} (P = 0.88); F = 0%									
Testfor overall effect: Z = 6.60 (P ≤ 0.00001) Favours control Favours reinforce							-4 -2 U 2 4 Favours control Favours reinforcemen		


Behavior change

- Change is difficult and there is always some level of ambivalence
 - Patients need to want to change
 - Patients need to believe that they can change

- Goals are to:
 - Resolve ambivalence and make patients want to change
 - Increase self-efficacy (belief they can make change)

Motivational enhancement RCT

- 83 new OSA patients at high cardiac risk randomized to usual care or ME from a psychologist.
- ME included 2 inperson visits and 5 phone calls over 6 months.
- Adherence: 3.3 hrs vs.4.4 hrs over 6 months.
- Difference persisted at 1 year.

Behavioral modification

Figure 7. Forest plot of comparison: 4 Behavioural therapy + CPAP versus control + CPAP, outcome: 4.1 Machine usage.

			Intervention	Control		Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	W, Random, 95% Cl
Aloia 2001	3.2	1.5785	8	6	7.5%	3.20 [0.11, 8.29]	
Aloia 2012b	0.13	0.523	47	49	20.1%	0.13 [-0.80, 1.16]	+
Olsen 2012	1.21	0.64	50	50	18.2%	1.21 [-0.04, 2.46]	-
Richards 2007	2.87	0.528	4 B	49	20.1%	2.87 [1.84, 3.90]	-
Roeddein 2010	0.38	0.82	14	16	15.5%	0.38 [-1.23, 1.98]	-
Sparrow 2018 (1)	1.71	0.82	124	126	18,6%	1.71 [0.49, 2.93]	-
Total (95% CI)			289	295	100.0%	1.44 [0.43, 2.45]	•
Heterogeneity: Tau ^e -	- 1.05; ChP = 16.89,	d r = 5 (F	a = 0.006); $P = 1$	70%			4 -7 0 7 4
Test for overall effect	Z = 2.79 (P = 0.005))					Control better Intervention better

Summary of patient-centered interventions

Intervention	Increase in mean usage per night	Number needed to treat to get 1 additional patient adherent (>4h)
Education	35 min (0.60 hr)	7.7
Troubleshooting	50 min (0.82 hr)	6.3
Behavioral modification	86 min (1.44 hr)	5.3

Take home message #4

Spending time with the patient works.

Self-monitoring

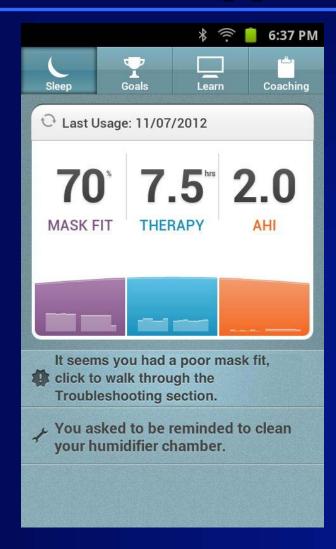
- 138 newly diagnosed OSA patients starting PAP randomized to:
 - Usual care
 - Usual care with web access to PAP use
 - Usual care with web access and financial incentive

Nightly hours of PAP Use

	Usual Care	Web Access	Web Access + \$\$
Week 1	4.7 ± 3.3	$6.3 \pm 2.5^*$	$5.9 \pm 2.5^*$
3 Months	3.8 ± 3.3	$5.0 \pm 3.2^*$	$4.8 \pm 3.0^*$

^{*} p<0.05 compared to usual care

Using CPAP mobile app


Retrospective analyses from two CPAP manufacturers.

Company 1	Number of patients	Usage per night (over 90 days)	% Adherent (Medicare)
No App	7,601	3.1 hrs	56%
Арр	7,641	4.5 hrs	78%

Company 2	Number of patients	Usage per night (over 90 days)	% Adherent (Medicare)
No App	85,358	4.9 hrs	70%
Арр	42,679	5.9 hrs	87%

Malhotra A et al, Chest 2018; 153: 843-50

CPAP mobile apps

Take home message #5

Self-monitoring increases adherence and is free.

Summary

- 1. Home sleep test/APAP strategy is just as good and quicker than in lab sleep study/CPAP titration.
- 2. Don't use full face masks unless you have to.
- 3. BPAP is rarely the answer.
- 4. Enabling patients is more effective than tweaking the machine.
- 5. Every patient should be tracking their own usage.